Electro-Contact-Discharge-Dressing for a more flexible use of circular saw blades

V. Global Stone Congress, 22-25 October 2014

B. Denkena, F. Seiffert, A. Ermisch, L. Tatzig

Antalya, October 23rd, 2014
Cut-off grinding strongly depends on adequate tool, process and work piece parameters.

Cut-off grinding requires precise adaptation of stone and tool properties as well as cutting parameters.

Insufficient adaptation leads to loss of process stability and quality due to insufficient self-sharpening effect.

Additional dressing process could compensate self-sharpening insufficiencies and increase process-flexibility.
Self-sharpening effect – Adaptation of segment design to specific natural stone properties

Segment design for soft stone

- Grain protrusion = const.
- Grain wear
- Constant bonding wear
- Outer diameter before grinding
- Hard bonding

Change to hard stone

- Significant decrease of grain protrusion
- Increased grain wear (mechanically)
- Bonding wear insufficient

Segment design for hard stone

- Grain protrusion = const.
- Grain wear (splittered and flattened)
- Constant bonding wear
- Soft bonding

Change to soft stone

- Grain protrusion gains accelerated
- Strong grain wear (flattened and broken out)
- Bonding wear strongly heightened
- Soft bonding

Kon/65829 © IFW
Bonding characteristics and consequences for flexibility-enhancement in cut-off grinding

<table>
<thead>
<tr>
<th></th>
<th>Segment design for soft stone</th>
<th>Segment design for hard stone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grit retention force</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Wear</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Ability to set back</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

For hard stone machining with harder bonding insufficient self-sharpening effect has to be compensated

Additional dressing process is required

Harder bonding specification advantageous for serial machining of soft and hard stone
Electro contact discharge dressing (ECDD) – First experiments for application in cut-off grinding

a) chip formation and field distortion

b) arc-over resulting of field distortion

c) chip evaporation

d) removing the bonding material

High power regulated power supply:
- Limitation of current
- Regulation of voltage
- DC-isolated

Tool:
- \(d_S = 115 \text{ mm} \)
- \(w_{\text{Seg}} = 2 \text{ mm} \)
- \(d_g = 301 \text{ \(\mu \)m} \)
- Bonding: Co, Cu, Fe

Dressing:
- Electrode: Graphite
- \(U_{\text{ds0}} = 10 - 60 \text{ V} \)
- \(I_{\text{ds0}} = 1 - 3 \text{ A} \)
- \(v_c = 30 \text{ m/s} \)
- \(v_{\text{fads}} = 0.83 - 3.33 \text{ \(\mu \)m/s} \)
New ECDD device for application in stone bridge saw

View a):
Tool housing with ECDD-devices

- Infeed device in housing mounted on carrier plate
- Carbon brush
- Copper flange
- Electrode holder
- Graphite electrode
- Inductive distance sensors for axial vibration measurement
- Spindle

View b):
With mounted cutting disc

- Rotating direction

Kon/65826 © IFW
New ECDD device on stone bridge saw – Operation test

Tool:
\[d_S = 1000 \text{ mm} \]
\[w_S = 5.0 \text{ mm} \]
\[w_{\text{Seg}} = 7.0 \text{ mm} \]
\[d_g = 301 - 601 \mu \text{m} \]
Bonding: Co, Cu, Fe

Dressing:
Electrode: Graphite
\[U_{\text{ds0}} = 60 \text{ V} \]
\[I_{\text{ds0}} = 3 \text{ A} \]
\[v_c = 30 \text{ m/s} \]
\[v_{\text{fads}} = 16.6 \mu \text{m/s} \]

Coolant:
None
Natural stone work pieces and cut-off grinding tools for experimental investigations

<table>
<thead>
<tr>
<th>Work piece specifications</th>
<th>Tool specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granite Rosa Sardo</td>
<td>Tool A</td>
</tr>
<tr>
<td>Material removal rate Q'_w [cm2/min]</td>
<td>400</td>
</tr>
<tr>
<td>Depth of cut a_e [mm]</td>
<td>10</td>
</tr>
<tr>
<td>Feed velocity v_{ft} [m/min]</td>
<td>4</td>
</tr>
<tr>
<td>Cutting speed v_c [m/s]</td>
<td>30</td>
</tr>
<tr>
<td>Sandstone Seeberger</td>
<td>Segment</td>
</tr>
<tr>
<td>Bonding Met. composition</td>
<td>FeCo</td>
</tr>
<tr>
<td>HRC</td>
<td>35 - 40</td>
</tr>
<tr>
<td>Diamond</td>
<td>30 - 50 Mesh</td>
</tr>
</tbody>
</table>
Influence of bonding specification and electrode feed rate v_{fads} on arc-over frequency

Hardness of FeCo without significant influence on arc-over frequency

Highest arc-over frequency for highly-conductive CuSn
Influence of bonding specification on process forces for ECDD-supported machining of granite

Largest effect of ECDD on highly-conductive CuSn-bonding with typical, stationary process force level
Influence of ECDD on the radial wear of different bonding specifications

- Generally higher radial wear with ECDD
- Generally lower radial wear on Sandstone

Granite

- Tool A
- Tool B
- Tool C

Sandstone

- Tool A
- Tool B
- Tool C

Tool A, B, C:
- $d_s = 1000 \text{ mm}$
- $b_s = 5 \text{ mm}$
- $b_{Seg} = 7 \text{ mm}$
- $n_{Seg} = 70$
- Bonding: var.
- Hardness: var.
- Diamond: 30/50 Mesh

Dressing:
- Electrode: Graphite
- $U_{ds0} = 90 \text{ V}$
- $I_{ds0} = 25 \text{ A}$
- $v_{fads} = 16 \mu\text{m/s}$

Parameter:
- Granite:
 - $v_c = 30 \text{ m/s}$
 - $v_{ft} = 4 \text{ m/min}$
 - $a_e = 10 \text{ mm}$
- Sandstone:
 - $v_c = 40 \text{ m/s}$
 - $v_{ft} = 2 \text{ m/min}$
 - $a_e = 150 \text{ mm}$

Work piece:
- var.

Cooling:
- water
Conclusions on bonding characteristics

<table>
<thead>
<tr>
<th></th>
<th>Tool A</th>
<th>Tool B</th>
<th>Tool C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>medium hard FeCo bonding</td>
<td>hard FeCo bonding</td>
<td>medium hard SnCu bonding</td>
</tr>
<tr>
<td>Applicability for hard stone</td>
<td>o/+</td>
<td>o</td>
<td>+</td>
</tr>
<tr>
<td>Applicability for soft stone</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>Erodable with ECDD</td>
<td>o</td>
<td>o</td>
<td>+</td>
</tr>
<tr>
<td>Process stabilization by ECDD</td>
<td>o/+</td>
<td>o</td>
<td>+</td>
</tr>
<tr>
<td>Wear in granite with ECDD</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>Wear in sandstone with ECDD</td>
<td>o</td>
<td>o</td>
<td>-</td>
</tr>
</tbody>
</table>

Best compromise for ECDD-supported serial cut-off grinding of granite and sandstone offers medium-hard CuSn-bonding.
Summary

- Cut-off grinding lacks flexibility due to material-related self-sharpening behavior of the tool
- New ECDD device was developed and implemented in cut-off grinding process
- Significance of dressing variables was evaluated, best dressing parameters were identified
- New segment compositions were investigated, best universal segment design for serial machining of hard and soft stone was identified

Experimental investigations proof: New ECDD dressing strategy capable of flexibility-enhancement in serial cut-off grinding of different natural stone materials
Acknowledgement

Supported by

Enhancement of the flexibility and process stability of diamond coated cutting disks for the machining of natural stone and concrete

IGF - Project 16809

Institute for Tool Research and Materials of Research Association for Tools and Materials, Remscheid

Institute of Production Engineering and Machine Tools
Leibniz Universität Hannover

© IFW
The IFW – Your Partner for Production Technology

Institute of Production Engineering and Machine Tools (IFW)
Produktionstechnisches Zentrum
Leibniz Universität Hannover
An der Universität 2, 30823 Garbsen
http://www.ifw.uni-hannover.de

Prof. Dr.-Ing. Berend Denkena
Tel. +49 511 762-2533
Fax. +49 511 762-5115
info@ifw.uni-hannover.de

Stone Division
gestein@ifw.uni-hannover.de

Dipl.-Ing. Lukas Tatzig
Dipl.-Ing. (FH) Andreas Ermisch
Dipl.-Wirtsch.-Ing. (FH) Florian Seiffert

© IFW