Werkzeugentwicklung für die Statorherstellung

Im Rahmen eines vom Bundesministerium für Wirtschaft und Energie (BMWi) geförderten ZIM-Projektes wurde in enger Zusammenarbeit mit der Industrie und Forschung ein neues Werkzeugkonzept zur Herstellung von Statoren entwickelt.

Bei Explorationsbohrungen zur Erkundung und Erschließung von Erdöl- und Erdgaslagerstätten werden in der Flach- und Tierbohrtechnik nach dem Verdrängungsprinzip arbeitende Moineau-Motoren, sogenannte PDMs (positive displacement motors), eingesetzt (Bild 2). Dazu wird Bohrspülung unter hohem Druck durch den Bohrstrang bis zum Bohrmotor gepumpt. In der eigentlichen Motoreinheit, bestehend aus einer 3 bis 5 m langen Rotor-Stator-Kombination, wird die hydraulische Energie in mechanische Energie in Form einer Drehbewegung gewandelt [1, 2].

Der exzentrisch laufende Rotor weist dazu scharraubenförmig gewundene Nocken auf. Im Stator ist entsprechend eine hypozykloidalähnliche gedrallte Innenkontur eingebracht, wobei zur Erzeugung eines Drehmomentes die Anzahl der Vertiefungen größer als die Anzahl der Nocken ist [3].

Bisher wird die hypozykloidalähnliche Kontur vollständig durch ein Elastomer in einem entsprechend langen Rohr aus Stahl gebildet. Neben der Formgebung hat das Elastomer zusätzlich eine Abdichtungsfunktion und gleicht Fertigungstoleranzen und Verformungen unter Last aus. Der
wesentliche Nachteil dieser Anordnung ist, dass durch die geringe mechanische Festigkeit und Temperaturbeständigkeit des Elastomers die Leistungsfähigkeit und Lebensdauer der Bohrnotoren stark begrenzt wird [3].

Ein neuer Ansatz ist es deshalb, den Stator aus einer Stahllageung endkonturnah zu fertigen und nur mit einer dünnen, gleichmäßige dicke Elastomschicht zu versehen [4]. Mit diesen äquidistanten Statoren lässt sich durch mögliche Druck- und Drehzahlverhöhung die Leistung gegenüber baugrößenäquivalenten konventionellen Statoren um bis zu 100 % steigern [5, 6], wobei gleichzeitig die Lebensdauer verdoppelt wird [4].

Herstellung von äquidistanten Statoren

Verfahrensgrenze als Herausforderung

Der Betrieb einer derart großen und komplexen Sondermaschine ist mit hohen Kosten verbunden, sodass es besonders wichtig ist, das vorhandene Leistungspotenzial voll auszunutzen. Dementsprechend hoch sind die Anforderungen an das zu entwickelnde Werkzeug und den Prozess.

Die über 5 m lange und 20 mm tiefe Wölbung in der Innenkontur sollte prozesssicher in unter zwei Stunden in vergüteten Stahl gefräst werden. Heraus resultiert gleichzeitig eine Standzeit der Werkzeuge von 2 Stunden, weil ein Wechsel während des Fräsprozesses sehr zeitaufwendig ist und der Werkzeugantrieb hierdurch beschädigt werden kann. Zudem ist durch das Umlenkgreifer nur ein begrenztes Drehmoment von 18 Nm übertragbar.

Zunächst wurde am IFW ein Werkzeuggrundkörper entwickelt, der die Geometrie der Innenkontur mit den erforderlichen Toleranzen in einem Durchgang bearbeiten kann (Bild 4). Der Grundkörper wurde mit stabilen Wendeschneidplatten bestückt, die eine hinsichtlich Werkzeugverschleiß angepasste Beschichtung und Schneidkantenrundung sowie eine verschleißbeständige Substrat aufweisen. In ersten Einsatzversuchen konnte aufgezeigt werden, dass die Standzeit der Wendeschneidplatten nach über 5 m Vorschubbewegung nicht erreicht war. Es stellte sich ein prozessorientierter, abrasiver Freiflächenverschleiß mit einer Verschleißmerkmalsbreite von VEBK 110 μm ohne Ausbrüche ein. Zudem war ausreichend Spanraum vorhanden, um die großen Späne aus der Vollnut sicher abzuführen. Bei den Einsatzversuchen wurden zusätzlich die Prozesskräfte für eine detaillierte Betrachtung der Werkzeugbelastung und des Schnittmomentes aufgenommen.

Inhalt des Artikels:

Seite 1: Werkzeugentwicklung für die Statorherstellung

Seite 2: Neuer Lösungsansatz zur Simulation
WERKZEUGENTwicklung für die Statorherstellung

KOMMENTAR ZU DIESEM ARTIKEL ABGEBEN

JETZT REGISTRIEREN UM MITDISKUTIEREN ZU KÖNNEN

JETZT KOSTENLOS REGISTRIEREN ANMELDEN

DIESER BEITRAG IST URBESRECHTIG SCHÜTZT SIE WOLLEN IHREN FÜR IHRE ZWECKE VERWENDEN? INFORMIEREN SIE ÜBER WERKZEUGMAKLER.DE/00-44125977/WERKZEUG

WHITEPAPER & WEBINARE

Kohlenstoffforschung
Forscher fertigen erstmals OLCE-Elektroden aus
Graphen

mehr

Horiba
Halbleiterausrüstung wird auch anders nutzbar

mehr

Umstrukturierung Schuler verkauft südliches
Betriebsgelände in Weingarten

mehr

Faser Technologie
Lasergebohrte Spirindüsen für Cellulosefasern

mehr

MEHR ZUM THEMA

Titanfaserspanung
Optimierte Werkzeuge stellen Schlüssel für
wirtschaftliche Bearbeitung der
Wendeschneidplatten
Verschleißverhalten keramischer
Wendeschneidplatten

Produktion
Optimierungspotenziale für die CFRP-Bearbeitung

UDMA-Forchendorf Präzisionswerkzeuge
Werkzeughersteller zeigen zahlreiche Neuheiten auf der AMB 2014

FOLLO W US ON

IMPRESSUM MEDIA ABO

http://www.maschinenmarkt.vogel.de/werkzeugentwicklung-fuer-die-statorherstellung... 06.01.2017