Forschung
Ressourceneffizienz

Schwerpunkt Ressourceneffizienz und Nachhaltigkeitsforschung

© Illu: Dorota Gorski / PZH

In der PZH-Vortragsreihe "Zukunftslabor Produktion und Gesellschaft" ging es zentral um Auswirkungen und Herausforderungen der katastrophalen Klimaentwicklung, etwa im bewussteren Umgang mit Ressourcen, also Werkstoffen oder Energie. Neben vielen einzelnen Projekten beschäftigt sich auch der Sonderforschungsbereich "Regeneration komplexer Investitionsgüter" mit diesem Ziel.

"MANUFACTURING IN A LOW ENERGY FUTURE" - JULIAN M ALLWOOD - CAMBRIDGE

FORSCHUNGSPROJEKTE ZUR RESSOURCENSCHONUNG

Ressourceneffizienz/Nachhaltigkeit

  • Charakterisierung des Kriechverhaltens einer Nickelbasis-Superlegierung unter nicht-isothermen Bedingungen und Modifikation der Kriechlebensdauer mittels Stromimpulsbehandlung
    In diesem Projekt wird das Kriechverhalten der einkristallinen Nickelbasis-Superlegierung CMSX-4 untersucht. Dazu werden nicht-isotherme Zeitstandversuche durchgeführt, bei denen die Proben vergleichsweise hochfrequenten Temperaturänderungen unterzogen werden. Darüber hinaus werden die Proben mit Elektroimpulsen zwischenbehandelt. Die Impulse hoher Stromdichte wirken sich auf die Versetzungsanordnung sowie die lokale chemische Zusammensetzung und damit auf das Kriechverhalten aus.
    Jahr: 2021
    Förderung: DFG
    Laufzeit: 01/2021
  • Entwicklung eines Schneidventils zum Schalten von Suspensionen für das Wasserstrahlschneiden (VentiSus)
    Im Rahmen des vom BMWi geförderten Vorhabens „VentiSus“ wird ein Schneidkopf für das Wasserabrasivsuspensionsstrahlschneiden (WASS) entwickelt, der es ermöglicht den Schneidprozess durch einen Schaltvorgang zu unterbrechen und wieder zu starten ohne den gesamten Druckbehälter über den Schneidkopf leeren zu müssen. Bisher sind Schaltventile lediglich für andere Verfahrensvarianten, wie das Reinwasser- sowie das Wasserabrasivinjektorstrahlschneiden auf dem Markt verfügbar. Dadurch lassen sich verfahrensspezifische Vorteile der WASS Technik nicht auf kommerziell vertriebene Anlagen übertragen.
    Jahr: 2021
    Förderung: BMWI - WIPANO
    Laufzeit: 01.03.2021 - 01.02.2023
  • Untersuchung zum Korrosionsrisiko beim Einsatz von austenitischem Schweißgut zur Vermeidung wasserstoffinduzierter Rissbildung beim nassen Unterwasserschweißen
    Ziel dieses Forschungsprojekts ist es, die Entwicklung des nassen Unterwasserschweißens mit Stabelektroden weiter zu entwickeln. Wie in früheren Studien gezeigt, hat die Zugabe von austenitischen Schweißzusätzen bei umhüllten Stabelektroden die Menge an diffusiblen Wasserstoff und somit auch das Risiko einer Wasserstoffversprödung verringert. Im aktuellen Projekt wird das Korrosionsverhalten durch unterschiedliche mikrostrukturelle Phasen im Stahl beim Unterwasserschweißen untersucht.
    Jahr: 2021
    Förderung: AiF
    Laufzeit: 01.01.2021 - 31.12.2022
  • Automatisierte Spraykühlung von Schmiedebauteilen
    Ziel des Projektes ist die Entwicklung einer automatisierten und bauteilunabhängigen Luft-Wasser-Spraykühlung im Anschluss an das Schmieden zur Reduzierung des Gesamtenergiebedarfs und der Gesamtprozessdauer. Hierzu wird eine inverse Prozessauslegung der Spraykühlung auf Basis numerischer Simulationen und experimenteller Validierungen der Gefügeumwandlung vorgenommen. Zusätzlich wird mit den Projektpartnern ein adaptives Handling sowie ein berührungsloses Temperaturmesssystem zur besseren Prozesskontrolle entwickelt.
    Jahr: 2021
    Förderung: AiF ZIM
    Laufzeit: 01.03.2021 - 31.08.2023
  • Partikelmodifizierung von Niob-MASC-Legierungen mittels Prozessierung unter Semi-Levitation im Kaltwand-Induktionstiegel
    Niob-MASC Systeme (Metal And Silicide Composites) sind für die Anwendung als Hochtemperaturkomponenten als Alternative zu verbreiteten Nickel‑Basissuperlegierungen interessant. Gemeinsam mit dem ETP (LUH) wird erstmals eine Partikelverstärkung von Nb-MASC-Systemen untersucht. Eine gesteigerte Festigkeit und effizientere Herstellungsroute mittels Kaltwand-Induktionstiegel sollen das Anwendungsfeld von Nb-MASC-Legierungen erweitert sowie die spezifischen Materialeigenschaften verbessern.
    Jahr: 2021
    Förderung: DFG
    Laufzeit: 01.07.2021 - 30.06.2024
  • HyFunk - Experimentelle und numerische Untersuchungen zu lokal aufschäumbaren Strangpressprofilen für die additive Fertigung von hybriden Funktionsstrukturen
    Leichtbaukonzepte bieten vielversprechende Lösungsansätze für eine ressourceneffiziente und nachhaltige Entwicklung und Fertigung technischer Funktionsstrukturen. Eine erfolgversprechende Leichtbaustrategie liegt hierbei in der Zusammenführung unterschiedlicher Materialien zu integrierten hybriden Strukturen aus Metall, Kunststoff und ggf. Verstärkungsfasern. Durch die gezielte Kombination der spezifischen Materialeigenschaften können funktionsgerechte, gewichtsoptimierte und individualisierte hybride Funktionsstrukturen hergestellt werden.
    Jahr: 2020
    Förderung: DFG
    Laufzeit: 05/2020-04/2023
  • Entwicklung von Halbzeugen mit optimierten Dämpfungseigenschaften auf Basis von pseudoelastischen eisenbasierten Formgedächtnislegierungen (FGL)
    Ziel des Projektes ist die Entwicklung von Halbzeugen mit definierten Dämpfungseigenschaften für eine spätere Anwendung in Stützen-Träger-Verbindungen. Für die Untersuchungen soll aufgrund der vielversprechenden Eigenschaften aktueller Forschungsvorhaben die eisenbasierte FGL Fe36Mn8Al8,5Ni verwendet werden. Im Gegensatz zu FGL die auf Ni-Ti-, Cu- oder Co-Ni- basieren, weist Fe36Mn8Al8,5Ni zum Teil deutlich geringere Materialkosten auf und wegen der Analogie zu den bekannten Stahlwerkstoffen kann die bereits etablierte Anlagen und Prozesstechnik verwendet werden. Die bereits an monokristallinem Material erzielten Ergebnisse sollen auf polykristallines Material und praxisnahe Anwendungen überführt werden. Im besonderen Fokus der Untersuchung steht der Schweißprozess und der Einfluss auf die FGL-Eigenschaften mit vor- und nachgelagerter Wärmebehandlung.
    Jahr: 2020
    Förderung: DFG HA 5843/14-1 / und MA 1175/82-1
    Laufzeit: 01.09.2019 – 31.08.2021
  • Untersuchung und Optimierung der Prozessparameter und Werkzeuge zum Unterwasserkleben von Halterungssystemen
    Ziel des Projektes ist die Untersuchung des Einflusses der Prozessparameter des mehrstufigen Injektionsverfahrens (Medien, Zeiten, Drücke, etc.) auf die Verbindungsgüte und die Entwicklung eines entsprechenden teilautomatisierten Werkzeugs für den Einsatz durch Taucher oder ROVs. Dazu erfolgt die Festlegung von Oberflächenvorbereitungsverfahren bzgl. ihrer Reinigungsqualität und Anwendung im Unterwasserbereich. Zur Steigerung der Langzeitbeständigkeit wird die Abdichtung der Klebfuge untersucht und ein autarkes Heizsystem für die Aushärtung entwickelt.
    Jahr: 2020
    Förderung: AiF-IGF
    Laufzeit: 01.02.2020 - 31.1.2022
  • Untersuchungen der Elektrodengeometrie und des Elektrodenmaterials zur Erzielung einer höheren Elektrodenstandzeit beim manuellen Elektrokontakttrennen unter Wasser
    Das UW-Elektrokontakttrennen ist ein elektrothermisches Metallbearbeitungsverfahren, bei dem die direkte Umwandlung von elektrischer in thermische Energie mittels Joulescher Erwärmung und Lichtbogenerwärmung erfolgt. Das Ziel des Forschungsvorhabens leitet sich aus dem hohen Verschleiß der Scheibenelektrode ab. Dieser soll beim manuellen und halbautomatischen Elektrokontakttrennen unter Wasser durch eine Optimierung des Elektrodenwerkstoffes und der Elektrodengeometrie minimiert werden.
    Jahr: 2020
    Förderung: AiF-IGF
    Laufzeit: 01.1.2020 - 31.12.2021
  • Steigerung der Wirtschaftlichkeit der Wasserstrahltechnik durch die Entwicklung eines Systems zum automatisierten Schneidkopfwechsel (SESAM)
    Im Rahmen des Vorhabens „SESAM“ wird ein System zum automatisierten Schneidkopfwechsel in der Wasserstrahltechnik entwickelt. Durch die komplexen Anforderungen an die Verbindung zwischen Strahlwerkzeug und Führungsmaschine, existiert bisher kein solches System auf dem Markt. Ein Werkzeugwechsel ist erforderlich, um zwischen Verfahrensvarianten des Wasserstrahlschneidens zu wechseln oder um Verschleißteile, wie Wasserdüsen oder Fokussierrohre auszutauschen. Neben der Ausrichtung des Werkzeugs gegenüber seinem Bezugssystem, muss die Verbindung auch die Abdichtung gegen den in der Wasserstrahltechnik eingesetzten Arbeitsdruck gewährleisten.
    Jahr: 2020
    Förderung: BMWi - WIPANO
    Laufzeit: 01.03.2019 - 01.02.2021
  • Untersuchung der Mikromechanismen des elektroplastischen Effekts in Magnesiumlegierungen mittels Elektronenmikroskopie
    Für Magnesiumlegierung ist die Nutzung des elektro-plastische Effektes besonders attraktiv, da hier aufgrund des hexagonal dichtest gepackten Gitters, d.h. der eingeschränkten Zahl der Gleitsysteme, eine schlechte Umformbarkeit bei Raumtemperatur vorliegt. Ziel dieses Forschungsprojekts ist es, die Mikromechanismen des elektro-plastischen Effektes am Beispiel von Reinmagnesium und Magnesiumlegierungen mittels elektronenmikroskopischer Methoden grundlegend zu verstehen.
    Jahr: 2020
    Förderung: DFG
    Laufzeit: 01/2020-12/2022
  • Prüfkonzept zur Detektion von rissbehafteten Schweißnähten an Offshore-Strukturen unterhalb der Wasserlinie
    Mit dem übergeordneten Ziel der Energiewende ist zum langfristigen Betrieb von Offshore-Windenergieanlagen eine effiziente Zustandserfassung der Unterwasser-Gründungsstrukturen erforderlich. Definierte Aussagen über Fehlerlage und –Größe ermöglichen erst eine ressourceneffiziente Instandsetzung. Ziel ist daher die Entwicklung eines einheitlichen Prüfkonzepts zur empfindlichen Detektion von rissbehafteten Schweißnähten in allen Tiefenlagen an Offshore-Strukturen unterhalb der Wasserlinie. Die Realisierung erfolgt über eine Kombination aus der oberflächensensitiven Wirbelstrom- und der tiefensensitistiven Phased-Array-Ultraschallprüfung, integriert in einen für den Unterwassereinsatz geeigneten Prüfkopf. Innerhalb der Untersuchungen werden insbesondere das Detektionsvermögen und die Fehlerentdeckungswahrscheinlichkeit untersucht und bewertet.
    Jahr: 2020
    Förderung: AiF-IGF
    Laufzeit: 01.01.2020 – 31.12.2021
  • Antriebsstrang 2025: Energieeffiziente Prozessketten zur Herstellung eines reibungs- gewichts- und lebensdaueroptimierten Antriebsstrangs
    Im Projekt Antriebsstrang 2025 werden innovative Prozessketten und hybride Werkzeugkonzepte entwickelt, welche die Herstellungs- und Nutzungsphase von Antriebskomponenten energie- und ressourceneffizienter gestalten. Anschließend erfolgt eine ökologische Bewertung und eventuelle Anpassung der entwickelten Prozessketten anhand von Online-Daten. Ziel ist es, die Energie- und Ressourceneffizienz in der Herstellung und Nutzung der Antriebskomponenten zu erhöhen und somit einen Beitrag zum Klimaschutz zu leisten.
    Jahr: 2019
    Förderung: BMWi
    Laufzeit: 09/2018 - 08/2021
    © IFW
  • Induktionswärmetechnik als praxisrelevantes Vor- und Nachbehandlungsverfahren zur Verbesserung der Schweißnahtqualität beim Unterwasserschweißen von Feinkornstählen mit erhöhtem Kohlenstoffäquivalent
    Ziel des Forschungsprojektes ist die Erarbeitung einer effektiven Alternative zur aufwändigen Temper-Bead-Technik, um höherfeste Stähle und Feinkornbaustähle mit einem Kohlenstoffäquivalent von CEV > 0,4 hyperbar nass schweißbar zu machen. Dabei sollen der Wasserstoffgehalt und das Gefüge kontrollierbar werden.
    Jahr: 2019
    Förderung: AiF
    Laufzeit: 01.07.2018 - 30.06.2020
  • Untersuchungen zur Ermüdungsfestigkeit von nass geschweißten Offshore-Stählen
    Ziel des Forschungsprojektes ist es, valide Ermüdungsfestigkeitswerte für hyperbar nass geschweißte Offshore-Stähle zu ermitteln. Für die Abschätzung von möglichen Folgen einer schweißtechnischen Reparatur und die Berechnung der Restlebensdauer sind Festigkeitswerte als Datenbasis von hoher Bedeutung. Dabei soll neben dem Einfluss der Wassertiefen auch der Wasserstoffgehalt als möglicher Einfluss auf den Rissstart untersucht werden.
    Jahr: 2019
    Förderung: AiF
    Laufzeit: 01.12.2019 - 30.11.2021
  • Füllstoffoptimierte Doppelmantel-Fülldrähte zum nassen UW-Schweißen
    Die Analyse des Verfahrens zum nassen Unterwasserschweißen zeigt, dass die Verwendung des Fülldrahtes großes Potential für diesen Prozess bietet, als günstige und vielfältig einsetzbare Alternative zur Stabelektrode den UW-Markt zu bereichern. Ziel des Forschungsprojektes IGF 20363 N ist es, die Grundlagen zur Entwicklung eines füllstoffoptimierten Doppelmantelfülldrahts für das nasse Schweißen unter Wasser zu schaffen.
    Jahr: 2019
    Förderung: AiF
    Laufzeit: 01.01.2019 - 30.06.2021
  • Transdisziplinäre Forschung zur Entsorgung hochradioaktiver Abfälle in Deutschland (TRANSENS)
    Radioaktive Abfälle müssen sicher entsorgt werden. Die sichere Entsorgung ist wissenschaftlich anspruchsvoll und wird in der Gesellschaft kontrovers diskutiert. Eine tragfähige Entsorgungslösung kann nur dann gefunden werden, wenn der Brückenschlag zwischen Gesellschaft und Wissenschaft gelingt. Bei TRANSENS wirken Wissenschaftlerinnen und Wissenschaftler, die interessierte Öffentlichkeit und weitere Akteure zusammen.
    Jahr: 2019
    Förderung: BMWi und Volkswagenstiftung
    Laufzeit: 01.10.2019 - 30.09.2024
  • Entwicklung eines 3D-Modells zur Beschreibung der Mikrostrukturentwicklung in Nickelbasis-Superlegierungen bei starker thermo-mechanischer und thermo-chemischer Kopplung
    In Kooperation mit dem Institut für Kontinuumsmechanik (IKM) soll ein Modell entwickelt werden, das das Verhalten der Mikrostruktur von Nickelbasis-Superlegierungen bei Kriechbelastung beschreibt. Es werden Kriechversuche durchgeführt und die Änderungen der Mikrostruktur mittels DIC (Digital Image Correlation) und Orientierungsmessungen verfolgt, welche sowohl im Rasterelektronenmikroskop, als auch dreidimensional im Röntgenmikroskop (mit DCT, Diffraction Contrast Tomography) durchgeführt werden.
    Jahr: 2019
    Förderung: DFG
    Laufzeit: 01/2019-12/2020
  • Präzisionsschmieden gegossener Vorformen
    Die Technologie des Schmiedens von gegossenen Vorformen (Gieß-Schmieden) stellt eine Alternative zur konventionellen Herstellung von Stahlbauteilen mit komplexen Geometrien dar. Hauptziel der geplanten Untersuchungen ist die Gewinnung von Erkenntnissen über die Entwicklung der mechanischen und mikrostrukturellen Eigenschaften des Gefüges der Gussvorform während der Umformung und die Identifizierung von geeigneten Prozessparametern.
    Jahr: 2018
    Förderung: DFG
    Laufzeit: 10/2018-12/2020
  • Microstructure-Functional Behavior-Relationships in High Entropy Shape Memory Alloys
    Um die Funktionalität und das Ermüdungsverhalten von Formgedächtnislegierungen zu verbessern werden hochtropische Formgedächtnislegierungen mit equiatomarer Zusammensetzung entwickelt. Diese sollen martensitische Umwandlungen in hohen Temperaturregimen ermöglichen und eine hohe Reversibilität aufweisen. Hierfür wird ein grundlegendes Verständnis über Ausscheidungen innerhalb der Mikrostrukturen solcher Legierungen und ihr Verhalten auf äußere Lasten sowie Wärmebehandlungen gebildet.
    Jahr: 2018
    Förderung: DFG
    Laufzeit: 01/2018-12/2020
  • Ganzheitliche Modellierung des Kurzzeitanlassens im Prozess des induktiven Randschichthärtens
    Durch das induktive Kurzzeitanlassen ist eine Flexibilisierung bestehender Prozessketten des Induktionshärtens bei gleichbleibender Produkt- und Prozessqualität realisierbar. Durch die im Vorhaben untersuchte nummerische Prozessauslegung kann der experimentelle Aufwand zur Ermittlung von werkstoff- und geometriespezifischen Induktionsanlassparametern deutlich reduziert und somit die Attraktivität dieser innovativen Anlasstechnologie gesteigert werden.
    Jahr: 2018
    Förderung: AiF-FOSTA
    Laufzeit: 03/2018-08/2020
  • Modellierung und Untersuchung der Degradation von Hüllrohrmaterialien aus Zr-Legierungen durch Hydridbildungs- und Hydridverteilungsprozesse im Hinblick auf die Langzeitzwischenlagerung (KEK)
    Das Projekt MUDZ befasst sich mit Untersuchungen zum Reorientierungsverhalten von Zirkoniumhydriden in Folge verschiedener thermischer und mechanischer Lastzustände in Zircaloy-2, das als Hüllrohr in Brennstäben von Kernreaktoren zum Einsatz kommt. Hierdurch sollen Modellvorstellungen entwickelt werden, die eine Abschätzung des Hydridverhaltens in der längerfristigen Zwischen- und Endlagerung von abgebrannten Brennelementen ermöglichen.
    Jahr: 2017
    Förderung: BMWi
    Laufzeit: 12.2017-08.2021
  • Aluminiumlegierungen mit angepasstem Schmelzintervall für das prozessintegrierte Ausschäumen beim Strangpressen
    Ziel dieses Projekts ist es, die Grundlagen zum direkten Ausschäumen von Hohlstrukturen aus Al-Legierungen mittels Verbundstrangpressen zu erarbeiten. Der außenliegende strukturgebende Konstruktionswerkstoff übernimmt hierbei die Krafteinleitung, den Korrosionsschutz sowie Zugkräfte, während der innenliegende Schaumwerkstoff die Biegesteifigkeit, Dämpfungseigenschaften und Energieabsorption erhöht. Solche stranggepressten, ausgeschäumten Strukturen können z. B. vorteilhaft im Automobilbau als Crashprofile eingesetzt werden. Prozessintegriert ausgeschäumte Strukturen bzw. Schaumstrukturen mit dichter Decklage werden, ungeachtet ihres besonderen Eigenschaftsspektrums, bisher noch nicht industriell in Großserie eingesetzt. Dies ist zum einen der begrenzten Gestaltungsfreiheit bei der Herstellung ausgeschäumter Bauteile mit dichten Decklagen geschuldet, andererseits werden bei der Herstellung bisher aufwändige Zusatzoperationen wie zusätzliche Schäum-, Manipulations- und Verbindungsprozesse benötigt.
    Jahr: 2017
    Förderung: DFG
    Laufzeit: 05/2017-01/2021
  • Hybride Schneidverfahren zum thermischen Trennen dickwandiger Reaktorbauteile unter Wasser
    Im Rahmen des Projektes wird für den Rückbau kerntechnischer Anlagen ein hybrider Schneidbrenner entwickelt welcher die prozesssichere Zerlegung dickwandiger Komponenten unter den gegebenen Randbedingungen ermöglichen ermöglicht. Auf Grund der hohen radiologischen Belastung, insbesondere von Bauteilen im Umfeld des Reaktordruckbehälters, müssen diese Komponenten zur Erzielung einer ausreichenden Abschirmung unter einer Wasserabdeckung von mehreren Metern zerlegt werden.
    Jahr: 2017
    Förderung: BMBF
    Laufzeit: 01.11.2017 - 30.4.2021
  • SPP 2006 CCA-HEA – Teilprojekt 5: Untersuchung des Zusammenhangs zwischen Mikrostruktur und funktionaler Ermüdung in Hochentropie-Formgedächtnislegierungen
    Hochentropie-Formgedächtnislegierungen stellen eine neue, faszinierende Gruppe von funktionalen Materialien dar, die in den verschiedensten Bereichen genutzt werden können. Sie zeigen beispielsweise eine reversible martensitische Transformation bei Temperaturen von über 100°C. Bisher ist allerdings noch wenig über das Vielkomponenten-Material und insbesondere dessen Verhalten während der martensitischen Transformation bekannt. Aus diesem Grund sollen die funktionalen und mechanischen Eigenschaften sowie die Werkstoffermüdung der neuen Legierungen im Rahmen dieses Projektes untersucht werden. Besonderes Augenmerk wird dabei auf den Zusammenhang zwischen lokalen mikrostrukturellen Eigenschaften und makroskopischem Verhalten gelegt.
    Jahr: 2017
    Förderung: DFG
    Laufzeit: 10/2017 – 09/2020
  • Erhöhung der Verschleißbeständigkeit von Schmiedewerkzeugen durch Einsatz eines intelligenten Warmarbeitsstahls in Kombination mit einer werkstoffspezifisch angepassten Nitrierbehandlung
    Am Warmarbeitsstahl 1.2365 mit einem zusätzlichen Masseanteil von 2% Mangan und 1,5% Nickel wird die Austenitstarttemperatur (Ac1b- Temperatur) gezielt gesenkt, sodass während des Schmiedeprozesses infolge der thermomechanischen Bedingungen eine wiederkehrende zyklische Randschichthärtung gebildet wird (siehe Bild 1). An thermomechanisch geringer belasteten Bereichen, an denen keine Neuhärtung eintritt, trägt die Nitrierschicht zum Verschleißschutz des Schmiedewerkzeugs bei.
    Jahr: 2017
    Förderung: AiF-FOSTA
    Laufzeit: 10/2017-06/2020
  • Steigerung technologischer Eigenschaften durch Kryobehandlung von Werkzeugstählen „Nanocarbide“
    Bei der Wärmebehandlung von hochlegierten Werkzeugstählen ist die Kryobehandlung, d.h. das Herunterkühlen des Werkstücks auf die Temperatur des flüssigen Stickstoffs, eine Zusatzbehandlung in der Wärmebehandlungskette Vergüten, mit der die Verschleißbeständigkeit und Zähigkeit von Stählen verbessert werden kann. Durch die Anwendung einer Kryobehandlung wird zum einen Restaustenit in Martensit umgewandelt und zum anderen eine homogenere Verteilung von Karbiden erzielt.
    Jahr: 2017
    Förderung: AiF-FOSTA
    Laufzeit: 01/2017-06/2020

SFB Regeneration

  • Lichtbogenschweißen von Titanlegierungen
    Ziel des Teilprojektes B6 ist es, moderne Lichtbogenschweißverfahren als Reparaturverfahren für die Wiederherstellung beschädigter Triebwerksbauteile aus Titanlegierungen zu etablieren und damit einen Beitrag zu leisten, diese hoch beanspruchten Komponenten nach der Regeneration dem Lebenszyklus des Investitionsgutes wieder zuzuführen. Die Herausforderung besteht dabei darin, bei der Regeneration den Wärmeeinfluss durch das Schmelzschweißen durch besonders wärmearme Lichtbogenschweißverfahren, wie z.B. das MIG(ColdArc)-, das Mikroplasma- und das leistungsarme WIG(SHARC)-Schweißen, zu minimieren.
    Jahr: 2018
    Förderung: DFG / SFB 871
    Laufzeit: 01.01.2018 – 31.12.2021 (3. Förderperiode)
  • Endkonturnahe Turbinenschaufelreparatur durch füge- und beschichtungstechnische Hybridprozesse
    In diesem Teilprojekt B1 wird mittels thermischen Spritzens eine Reparaturbeschichtung auf die Turbinenschaufel appliziert und anschließend ein kombinierter Löt-, Alitierprozess durchgeführt. Hierdurch wird die dem Stand der Technik entsprechende Reparaturlötprozesskette wesentlich verkürzt, wodurch sich mechanisch-technologische Verbesserungen (z.B. Erhöhung der Reparaturzyklenzahl auf 6 – 7, verbesserte Schichthaftung) und gleichzeitig wirtschaftliche Vorteile regenerierter Turbinenschaufeln ergeben.
    Jahr: 2018
    Förderung: DFG / SFB 871
    Laufzeit: 01.01.2018 – 31.12.2021 (3. Förderperiode)
  • Zerstörungsfreie Charakterisierung von Beschichtungen und Werkstoffzuständen hochbeanspruchter Triebwerksbauteile
    Im SFB 871 werden eine Vielzahl neuer Reparaturverfahren für Triebwerksbauteile entwickelt, wodurch sich auch die relevanten mechanisch-technologischen Kennwerte der reparierten Bauteile in bisher nicht bekannter und dokumentierter Weise verändern. Um diesen regenerationsbedingten Einfluss zu erfassen und die Reparaturmaßnahmen entsprechend zu bewerten, wird die Entwicklung eines Prüfstandes zur zerstörungsfreien online Erfassung und Charakterisierung der Schädigungsentwicklung in Referenzproben sowie in regenerierten Proben und Bauteilen unter thermischer und zyklischer Beanspruchung durchgeführt. Die Erfassung der Schädigungsentwicklung im zeitlichen Verlauf wird dabei durch den Einsatz von Schallemmission- und Körperschallanalyse sowie der Wirbelstrom- und Thermografietechnik realisiert.
    Jahr: 2018
    Förderung: DFG / SFB 871
    Laufzeit: 01.01.2018 – 31.12.2021 (3. Förderperiode)
  • SFB871 – C1: „Simulationsbasierte Prozessauslegung spanender Rekonturierungstechnologien“
    Im Teilprojekt C1 („Simulationsbasierte Prozessauslegung spanender Rekonturierungstechnologien“) des SFB871 werden am Beispiel von Triebwerksschaufeln die spanende Rekonturierung und ihr Einfluss auf die Oberflächenqualität sowie die Eigenspannung in der Randzone untersucht. Ziel ist es Bearbeitungsregeln zur gezielten Einstellung der zerspanungsbedingten Bauteilbeeinflussung aufstellen und eine bauteilindividuelle NC-Prozessplanung vorzunehmen.
    Team: Sven Friebe
    Jahr: 2012
    Förderung: DFG-Förderung
    Laufzeit: 01/2014 – 12/2021
  • SFB871-B2: „Geschickte Reparaturzelle“
    Im Teilprojekt B2 („Geschickte Reparaturzelle“) des SFB871 wird die technologiebasierte, spanende Rekonturierung komplexer Investitionsgüter erforscht. Hierzu werden sowohl prozess- als auch maschinentechnologische Grundlagen erarbeitet.
    Jahr: 2011
    Förderung: DFG
    Laufzeit: 01/2014 – 12/2021